Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 132: 111950, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38579564

RESUMO

Neutrophils play a vital role in the innate immunity by perform effector functions through phagocytosis, degranulation, and forming extracellular traps. However, over-functioning of neutrophils has been associated with sterile inflammation such as Type 2 Diabetes, atherosclerosis, cancer and autoimmune disorders. Neutrophils exhibiting phenotypical and functional heterogeneity in both homeostatic and pathological conditions suggests distinct signaling pathways are activated in disease-specific stimuli and alter neutrophil functions. Hence, we examined mass spectrometry based post-translational modifications (PTM) of neutrophil proteins in response to pathologically significant stimuli, including high glucose, homocysteine and bacterial lipopolysaccharides representing diabetes-indicator, an activator of thrombosis and pathogen-associated molecule, respectively. Our data revealed that these aforesaid stimulators differentially deamidate, citrullinate, acetylate and methylate neutrophil proteins and align to distinct biological functions associated with degranulation, platelet activation, innate immune responses and metabolic alterations. The PTM patterns in response to high glucose showed an association with neutrophils extracellular traps (NETs) formation, homocysteine induced proteins PTM associated with signaling of systemic lupus erythematosus and lipopolysaccharides induced PTMs were involved in pathways related to cardiomyopathies. Our study provides novel insights into neutrophil PTM patterns and functions in response to varied pathological stimuli, which may serve as a resource to design therapeutic strategies for the management of neutrophil-centred diseases.

2.
Int J Biochem Cell Biol ; 170: 106558, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479581

RESUMO

Thousand and one amino acid kinase 1 (TAOK1) is a sterile 20 family Serine/Threonine kinase linked to microtubule dynamics, checkpoint signaling, DNA damage response, and neurological functions. Molecular-level alterations of TAOK1 have been associated with neurodevelopment disorders and cancers. Despite their known involvement in physiological and pathophysiological processes, and as a core member of the hippo signaling pathway, the phosphoregulatory network of TAOK1 has not been visualized. Aimed to explore this network, we first analyzed the predominantly detected and differentially regulated TAOK1 phosphosites in global phosphoproteome datasets across diverse experimental conditions. Based on 709 qualitative and 210 quantitative differential cellular phosphoproteome datasets that were systematically assembled, we identified that phosphorylation at Ser421, Ser9, Ser965, and Ser445 predominantly represented TAOK1 in almost 75% of these datasets. Surprisingly, the functional role of all these phosphosites in TAOK1 remains unexplored. Hence, we employed a robust strategy to extract the phosphosites in proteins that significantly correlated in expression with predominant TAOK1 phosphosites. This led to the first categorization of the phosphosites including those in the currently known and predicted interactors, kinases, and substrates, that positively/negatively correlated with the expression status of each predominant TAOK1 phosphosites. Subsequently, we also analyzed the phosphosites in core proteins of the hippo signaling pathway. Based on the TAOK1 phosphoregulatory network analysis, we inferred the potential role of the predominant TAOK1 phosphosites. Especially, we propose pSer9 as an autophosphorylation and TAOK1 kinase activity-associated phosphosite and pS421, the most frequently detected phosphosite in TAOK1, as a significant regulatory phosphosite involved in the maintenance of genome integrity. Considering that the impact of all phosphosites that predominantly represent each kinase is essential for the efficient interpretation of global phosphoproteome datasets, we believe that the approach undertaken in this study is suitable to be extended to other kinases for accelerated research.


Assuntos
Fosfotransferases , Proteínas Serina-Treonina Quinases , Fosfotransferases/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
3.
OMICS ; 28(3): 125-137, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38527276

RESUMO

Nematode infections are common in both humans and livestock, with major adverse planetary health and economic impacts. Wuchereria bancrofti is a parasitic nematode that causes lymphatic filariasis, a neglected tropical disease that can lead to severe disability and deformity worldwide. For the long-term survival of the bancroftian parasites in the host, a complex immune invasion strategy is involved through immunomodulation. Therefore, immunomodulation can serve as a site of research and innovation for molecular targets. Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine crucial to the host antimicrobial alarm system and stress response. Interestingly, the nematode parasite W. bancrofti also produces two homologs of MIF (Wba-MIF1 and 2). Using a mass spectrometry-based phosphoproteomics approach, we report new findings on the immunomodulatory effect and signaling mechanism of Wba-MIF2 in macrophage cells. Accordingly, we observed 1201 phosphorylated sites on 467 proteins. Out of the 1201 phosphorylated sites, 1075, 117, and 9 were found on serine (S), threonine (T), and tyrosine (Y) residues, respectively. Our bioinformatics analysis led to identification of major pathways, including spliceosomes, T cell receptor signaling pathway, Th17 differentiation pathway, interleukin-17 signaling pathway, and insulin signaling pathway upon Wba-MIF2 treatment. Wba-MIF2 treatment also enriched CDK4, CDK1, and DNAPK kinases. The comparison of the signaling pathway of Wba-MIF2 with that of human-MIF suggests both share similar signaling pathways. These findings collectively offer new insights into the role and mechanism of Wba-MIF2 as an immunomodulator and inform future diagnostics and drug discovery research for W. bancrofti.


Assuntos
Anti-Infecciosos , Filariose Linfática , Fatores Inibidores da Migração de Macrófagos , Parasitos , Animais , Humanos , Wuchereria bancrofti/metabolismo , Parasitos/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Filariose Linfática/parasitologia
4.
J Proteome Res ; 23(3): 1102-1117, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38358903

RESUMO

Nontuberculous mycobacteria are opportunistic bacteria pulmonary and extra-pulmonary infections in humans that closely resemble Mycobacterium tuberculosis. Although genome sequencing strategies helped determine NTMs, a common assay for the detection of coinfection by multiple NTMs with M. tuberculosis in the primary attempt of diagnosis is still elusive. Such a lack of efficiency leads to delayed therapy, an inappropriate choice of drugs, drug resistance, disease complications, morbidity, and mortality. Although a high-resolution LC-MS/MS-based multiprotein panel assay can be developed due to its specificity and sensitivity, it needs a library of species-specific peptides as a platform. Toward this, we performed an analysis of proteomes of 9 NTM species with more than 20 million peptide spectrum matches gathered from 26 proteome data sets. Our metaproteomic analyses determined 48,172 species-specific proteotypic peptides across 9 NTMs. Notably, M. smegmatis (26,008), M. abscessus (12,442), M. vaccae (6487), M. fortuitum (1623), M. avium subsp. paratuberculosis (844), M. avium subsp. hominissuis (580), and M. marinum (112) displayed >100 species-specific proteotypic peptides. Finally, these peptides and corresponding spectra have been compiled into a spectral library, FASTA, and JSON formats for future reference and validation in clinical cohorts by the biomedical community for further translation.


Assuntos
Mycobacterium tuberculosis , Proteômica , Animais , Humanos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Micobactérias não Tuberculosas/genética , Mycobacterium tuberculosis/genética , Peptídeos
5.
Sci Rep ; 14(1): 3872, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365839

RESUMO

Hemigraphis alternata (H. alternata), commonly known as Red Flame Ivy, is widely recognized for its wound healing capabilities. However, the pharmacologically active plant components and their mechanisms of action in wound healing are yet to be determined. This study presents the mass spectrometry-based global metabolite profiling of aqueous and ethanolic extract of H. alternata leaves. The analysis identified 2285 metabolites from 24,203 spectra obtained in both positive and negative polarities. The identified metabolites were classified under ketones, carboxylic acids, primary aliphatic amines, steroids and steroid derivatives. We performed network pharmacology analysis to explore metabolite-protein interactions and identified 124 human proteins as targets for H. alternata metabolites. Among these, several of them were implicated in wound healing including prothrombin (F2), alpha-2A adrenergic receptor (ADRA2A) and fibroblast growth factor receptor 1 (FGFR1). Gene ontology analysis of target proteins enriched cellular functions related to glucose metabolic process, platelet activation, membrane organization and response to wounding. Additionally, pathway enrichment analysis revealed potential molecular network involved in wound healing. Moreover, in-silico docking analysis showed strong binding energy between H. alternata metabolites with identified protein targets (F2 and PTPN11). Furthermore, the key metabolites involved in wound healing were further validated by multiple reaction monitoring-based targeted analysis.


Assuntos
Ativação Plaquetária , Cicatrização , Humanos , Cicatrização/fisiologia , Metabolômica , Folhas de Planta/química , Simulação de Acoplamento Molecular
6.
OMICS ; 28(1): 8-23, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38190280

RESUMO

Checkpoint kinase 1 (CHK1), a serine/threonine kinase, plays a crucial role in cell cycle arrest and is a promising therapeutic target for drug development against cancers. CHK1 coordinates cell cycle checkpoints in response to DNA damage, facilitating repair of single-strand breaks, and maintains the genome integrity in response to replication stress. In this study, we employed an integrated computational and experimental approach to drug discovery and repurposing, aiming to identify a potent CHK1 inhibitor among existing drugs. An e-pharmacophore model was developed based on the three-dimensional crystal structure of the CHK1 protein in complex with CCT245737. This model, characterized by seven key molecular features, guided the screening of a library of drugs through molecular docking. The top 10% of scored ligands were further examined, with procaterol emerging as the leading candidate. Procaterol demonstrated interaction patterns with the CHK1 active site similar to CHK1 inhibitor (CCT245737), as shown by molecular dynamics analysis. Subsequent in vitro assays, including cell proliferation, colony formation, and cell cycle analysis, were conducted on gastric adenocarcinoma cells treated with procaterol, both as a monotherapy and in combination with cisplatin. Procaterol, in synergy with cisplatin, significantly inhibited cell growth, suggesting a potentiated therapeutic effect. Thus, we propose the combined application of cisplatin and procaterol as a novel potential therapeutic strategy against human gastric cancer. The findings also highlight the relevance of CHK1 kinase as a drug target for enhancing the sensitivity of cytotoxic agents in cancer.


Assuntos
4-Aminopiridina/análogos & derivados , Antineoplásicos , Pirazinas , Neoplasias Gástricas , Humanos , Cisplatino/farmacologia , Quinase 1 do Ponto de Checagem/genética , Procaterol , Neoplasias Gástricas/tratamento farmacológico , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Reposicionamento de Medicamentos , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Descoberta de Drogas , Dano ao DNA , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química
7.
J Proteome Res ; 22(11): 3447-3463, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37877620

RESUMO

Leptospirosis, a remerging zoonosis, has no effective vaccine or an unambiguous early diagnostic reagent. Proteins differentially expressed (DE) under pathogenic conditions will be useful candidates for antileptospiral measures. We employed a multipronged approach comprising high-resolution TMT-labeled LC-MS/MS-based proteome analysis coupled with bioinformatics on leptospiral proteins following Triton X-114 subcellular fractionation of leptospires treated under physiological temperature and osmolarity that mimic infection. Although there were significant changes in the DE proteins at the level of the entire cell, there were notable changes in proteins at the subcellular level, particularly on the outer membrane (OM), that show the significance of subcellular proteome analysis. The detergent-enriched proteins, representing outer membrane proteins (OMPs), exhibited a dynamic nature and upregulation under various physiological conditions. It was found that pathogenic proteins showed a higher proportion of upregulation compared to the nonpathogenic proteins in the OM. Further analysis identified 17 virulent proteins exclusively upregulated in the outer membrane during infection that could be useful for vaccine and diagnostic targets. The DE proteins may aid in metabolic adaptation and are enriched in pathways related to signal transduction and antibiotic biosynthesis. Many upregulated proteins belong to protein export systems such as SEC translocase, T2SSs, and T1SSs, indicating their sequential participation in protein transport to the outer leaflet of the OM. Further studies on OM-localized proteins may shed light on the pathogenesis of leptospirosis and serve as the basis for effective countermeasures.


Assuntos
Leptospira , Leptospirose , Vacinas , Humanos , Proteoma/genética , Proteoma/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Temperatura , Cromatografia Líquida , Espectrometria de Massas em Tandem , Leptospira/metabolismo
8.
Comput Biol Med ; 164: 107279, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37572440

RESUMO

Long non-coding-RNAs (lncRNAs) are an expanding set of cis-/trans-regulatory RNA genes that outnumber the protein-coding genes. Although being increasingly discovered, the functional role of the majority of lncRNAs in diverse biological conditions is undefined. Increasing evidence supports the critical role of lncRNAs in the emergence, regulation, and progression of various viral infections including influenza, hepatitis, coronavirus, and human immunodeficiency virus. Hence, the identification of signature lncRNAs would facilitate focused analysis of their functional roles accounting for their targets and regulatory mechanisms associated with infections. Towards this, we compiled 2803 lncRNAs identified to be modulated by 33 viral strains in various mammalian cell types and are provided through the resource named VirhostlncR (http://ciods.in/VirhostlncR/). The information on each of the viral strains, their multiplicity of infection, duration of infection, host cell name and cell types, fold change of lncRNA expression, and their specific identification methods are integrated into VirhostlncR. Based on the current datasets, we report 150 lncRNAs including differentiation antagonizing non-protein coding RNA (DANCR), metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), maternally expressed gene 3 (MEG3), nuclear paraspeckle assembly transcript 1 (NEAT1), and plasmacytoma variant translocation 1 (PVT1) to be perturbed by two or more viruses. Analysis of viral protein interactions with human transcription factors (TFs) or TF-containing protein complexes identified that distinct viruses can transcriptionally regulate many of these lncRNAs through multiple protein complexes. Together, we believe that the current dataset will enable priority selection of lncRNAs for identification of their targets and serve as an effective platform for the analysis of noncoding RNA-mediated regulations in viral infections.


Assuntos
RNA Longo não Codificante , Viroses , Animais , Humanos , RNA Longo não Codificante/genética , Viroses/genética , Mamíferos/genética , Mamíferos/metabolismo
9.
Sci Rep ; 13(1): 12312, 2023 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-37516743

RESUMO

Maternal diet is an essential factor that directly and indirectly regulates fetal growth. Exposure to certain environmental conditions substantially impacts an individual's short- and long-term health. Adipose tissue dysfunction is a worldwide chronic disease caused by improper lipid build-up in adipose tissue leading to obesity. Therefore, it is the need of the hour to invent anti-obesity agents. As a keto-carotenoid, Astaxanthin (AsX) has been shown to have preventive effects against problems associated with obesity. A crucial role in the pathogenesis of obesity has been attributed to dietary polyunsaturated fatty acids. Adipose tissue plays a vital role in maintaining overall body homeostasis. Metabolic dysfunction of white adipocytes forms a critical step in the emergence of insulin resistance and related diseases. Here we aim to investigate the effect of AsX and Docosahexaenoic acid (DHA) supplementation on the proteomic profile of perinatal undernutrition-induced adipose tissue dysfunction in adult life using a rat model. The LC-MS/MS quantitative proteomics enabled us to identify differentially expressed proteins in perinatal undernourished but AsX and DHA-supplemented animal models. Data are available via ProteomeXchange with identifier PXD041772.This study explored biological roles, molecular functions of differentially expressed proteins, and pathways related to adipose tissue dysfunction induced by undernutrition and its effective modulation by AsX and DHA.


Assuntos
Ácidos Docosa-Hexaenoicos , Desnutrição , Feminino , Gravidez , Animais , Ratos , Ácidos Docosa-Hexaenoicos/farmacologia , Cromatografia Líquida , Proteômica , Espectrometria de Massas em Tandem , Desnutrição/complicações , Obesidade , Tecido Adiposo , Suplementos Nutricionais
10.
J Proteomics ; 285: 104950, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37321300

RESUMO

Improving reproductive performance of cattle is of paramount importance for sustainable dairy farming. Poor reproduction performance (RP) hinders the genetic improvement of important Bos indicus cattle breeds. It is well known that incorporation of molecular information along with conventional breeding method is far better than use of conventional method alone for the genetic improvement of reproductive performance traits in cattle. Therefore, the present study sought to investigate the plasma proteome of the Deoni cows in cyclical (n = 6) and pregnant (n = 6) reproductive phases with varying reproductive performance (high and low). High-throughput data independent acquisition (DIA) based proteomics was performed to understand corresponding proteome. We identified a total of 430 plasma proteins. Among cyclic cows, twenty proteins were differentially regulated in low RP as compared to high RP. BARD1 and AFP proteins were observed upregulated in cyclical cows whose upregulation reported to affect reproductive performance in cattle. Among the pregnant cows, thirty-five proteins were differentially regulated, including the downregulation of FGL2 and ZNFX1 that modulates the maternal immune response mechanism which is required for successful implantation of the embryo. Also, proteins such as AHSG, CLU and SERPINA6 were upregulated in the pregnant cows whose upregulation reported to reduced reproductive performance. The results of this study will be helpful in establishing a framework for future research on the aspect of improving reproductive performance in Bos indicus cattle breeds. SIGNIFICANCE: The Indian subcontinent is the center of domestication for Bos indicus cattle breeds and they are known for their disease resistance, heat tolerance, ability to survive in low input regime and harsh climatic conditions. In recent times, population of many important Bos indicus breeds including Deoni cattle is declining due to various factors, especially due to reproductive performance. Traditional breeding methods are not sufficient enough to understand and improve the reproductive performance traits in important Bos indicus cattle breeds. Proteomics approach is a promising technology to understand the complex biological factors which leads to poor reproductive performance in cattle. The present study utilized DIA based LC- MS/MS analysis to identify the plasma proteins associated with reproductive performance in cyclical and pregnant cows. This study if improved further, can be used to develop potential protein markers associated with reproductive performance which is useful for the selection and genetic improvement of important Bos indicus breeds.


Assuntos
Simulação de Dinâmica Molecular , Proteoma , Gravidez , Feminino , Bovinos , Animais , Espectrometria de Massas em Tandem , Reprodução
11.
Comput Struct Biotechnol J ; 21: 1995-2008, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36950221

RESUMO

The vital cellular functions in Gram-positive bacteria are controlled by signaling molecules known as quorum sensing peptides (QSPs), considered promising therapeutic interventions for bacterial infections. In the bacterial system QSPs bind to membrane-coupled receptors, which then auto-phosphorylate and activate intracellular response regulators. These response regulators induce target gene expression in bacteria. One of the most reliable trends in drug discovery research for virulence-associated molecular targets is the use of peptide drugs or new functionalities. In this perspective, computational methods act as auxiliary aids for biologists, where methodologies based on machine learning and in silico analysis are developed as suitable tools for target peptide identification. Therefore, the development of quick and reliable computational resources to identify or predict these QSPs along with their receptors and inhibitors is receiving considerable attention. The databases such as Quorumpeps and Quorum Sensing of Human Gut Microbes (QSHGM) provide a detailed overview of the structures and functions of QSPs. The tools and algorithms such as QSPpred, QSPred-FL, iQSP, EnsembleQS and PEPred-Suite have been used for the generic prediction of QSPs and feature representation. The availability of compiled key resources for utilizing peptide features based on amino acid composition, positional preferences, and motifs as well as structural and physicochemical properties, including biofilm inhibitory peptides, can aid in elucidating the QSP and membrane receptor interactions in infectious Gram-positive pathogens. Herein, we present a comprehensive survey of diverse computational approaches that are suitable for detecting QSPs and QS interference molecules. This review highlights the utility of these methods for developing potential biomarkers against infectious Gram-positive pathogens.

12.
Mol Cell Proteomics ; 22(5): 100533, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36948415

RESUMO

Mycobacterium avium is one of the prominent disease-causing bacteria in humans. It causes lymphadenitis, chronic and extrapulmonary, and disseminated infections in adults, children, and immunocompromised patients. M. avium has ∼4500 predicted protein-coding regions on average, which can help discover several variants at the proteome level. Many of them are potentially associated with virulence; thus, identifying such proteins can be a helpful feature in developing panel-based theranostics. In line with such a long-term goal, we carried out an in-depth proteomic analysis of M. avium with both data-dependent and data-independent acquisition methods. Further, a set of proteogenomic investigations were carried out using (i) a protein database for Mycobacterium tuberculosis, (ii) an M. avium genome six-frame-translated database, and (iii) a variant protein database of M. avium. A search of mass spectrometry data against M. avium protein database resulted in identifying 2954 proteins. Further, proteogenomic analyses aided in identifying 1301 novel peptide sequences and correcting translation start sites for 15 proteins. Ultimately, we created a spectral library of M. avium proteins, including novel genome search-specific peptides and variant peptides detected in this study. We validated the spectral library by a data-independent acquisition of the M. avium proteome. Thus, we present an M. avium spectral library of 29,033 peptide precursors supported by 0.4 million fragment ions for further use by the biomedical community.


Assuntos
Mycobacterium avium , Proteogenômica , Criança , Humanos , Mycobacterium avium/genética , Proteômica/métodos , Proteoma/genética , Virulência , Genoma Bacteriano , Genômica/métodos , Peptídeos/genética , Espectrometria de Massas
13.
J Cell Commun Signal ; 17(3): 1067-1079, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36881336

RESUMO

Vascular endothelial growth factor-A (VEGF-A) is one of the primary factors promoting angiogenesis in endothelial cells. Although defects in VEGF-A signaling are linked to diverse pathophysiological conditions, the early phosphorylation-dependent signaling events pertinent to VEGF-A signaling remain poorly defined. Hence, a temporal quantitative phosphoproteomic analysis was performed in human umbilical vein endothelial cells (HUVECs) treated with VEGF-A-165 for 1, 5 and 10 min. This led to the identification and quantification of 1971 unique phosphopeptides corresponding to 961 phosphoproteins and 2771 phosphorylation sites in total. Specifically, 69, 153, and 133 phosphopeptides corresponding to 62, 125, and 110 phosphoproteins respectively, were temporally phosphorylated at 1, 5, and 10 min upon addition of VEGF-A. These phosphopeptides included 14 kinases, among others. This study also captured the phosphosignaling events directed through RAC, FAK, PI3K-AKT-MTOR, ERK, and P38 MAPK modules with reference to our previously assembled VEGF-A/VEGFR2 signaling pathway map in HUVECs. Apart from a significant enrichment of biological processes such as cytoskeleton organization and actin filament binding, our results also suggest a role of AAK1-AP2M1 in the regulation of VEGFR endocytosis. Taken together, the temporal quantitative phosphoproteomics analysis of VEGF signaling in HUVECs revealed early signaling events and we believe that this analysis will serve as a starting point for the analysis of differential signaling across VEGF members toward the full elucidation of their role in the angiogenesis processes. Workflow for the identification of early phosphorylation events induced by VEGF-A-165 in HUVEC cells.

14.
J Cell Commun Signal ; 17(3): 1089-1095, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36715855

RESUMO

Glial cell line-derived neurotrophic factor (GDNF) signals through a multi-component receptor system predominantly consisting of glycosyl-phosphatidylinositol-anchored GDNF family receptor alpha-1 (GFRα1) and the Rearranged during transfection (RET) receptor tyrosine kinase. GDNF/RET signaling is vital to the central and peripheral nervous system, kidney morphogenesis, and spermatogenesis. In addition, the dysregulation of the GDNF/RET signaling has been implicated in the pathogenesis of cancers. Despite the extensive research on GDNF/RET signaling, a molecular network of reactions induced by GDNF reported across the published literature. However, a comprehensive GDNF/RET pathway resource is currently unavailable. We describe an integrated signaling pathway reaction map of GDNF/RET consisting of 1151 molecular reactions. These include information pertaining to 52 molecular association events, 70 enzyme catalysis events, 36 activation/inhibition events, 22 translocation events, 856 gene regulation events, and 115 protein-level expression events induced by GDNF in diverse cell types. We developed a comprehensive GDNF/RET signaling network map based on these molecular reactions. The pathway map was made accessible through WikiPathways database ( https://www.wikipathways.org/index.php/Pathway:WP5143 ). Biocuration and development of gene regulatory network map of GDNF/RET signaling pathway.

15.
J Proteome Res ; 22(1): 152-169, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36417662

RESUMO

Rice is a staple food crop worldwide; however, salinity stress is estimated to reduce its global production by 50%. Knowledge about initial molecular signaling and proteins associated with sensing salinity among crop plants is limited. We characterized early salt effects on the proteome and metabolome of rice tissues. Omics results were validated by western blotting and multiple reaction monitoring assays and integrated with physiological changes. We identified 8160 proteins and 2045 metabolites in rice tissues. Numerous signaling pathways were induced rapidly or partially by salinity. Combined data showed the most susceptible proteins or metabolites in each pathway that likely affected the sensitivity of rice to salinity, such as PLA1, BON3 (involved in sensing stress), SnRK2, pro-resilin, GDT1, G-proteins, calmodulin activators (Ca2+ and abscisic acid signaling), MAPK3/5, MAPKK1/3 (MAPK pathway), SOS1, ABC F/D, PIP2-7, and K+ transporter-23 (transporters), OPR1, JAR1, COL1, ABA2, and MAPKK3 (phytohormones). Additionally, our results expanded the stress-sensing function of receptor-like kinases, phosphatidylinositols, and Na+ sensing proteins (IPUT1). Combined analyses revealed the most sensitive components of signaling pathways causing salt-susceptibility in rice and suggested potential targets for crop improvement.


Assuntos
Oryza , Oryza/genética , Estresse Fisiológico , Proteômica , Tolerância ao Sal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cloreto de Sódio , Salinidade
16.
Helicobacter ; 28(1): e12941, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36468839

RESUMO

BACKGROUND: Helicobacter pylori is an infection of concern for its chronic colonization leading to peptic ulcers and gastric cancer. In recent times, microRNAs have been extensively studied to understand their role in the pathogenesis of this bacteria in diverse contexts of gastric diseases. The current analysis reports the microRNA-mRNA interactions that are associated with effective survival and virulence of this pathogen. MATERIALS AND METHODS: We convened differentially regulated human microRNAs responsive to H. pylori infection (HP-hDEmiRs) at different multiplicity of infection and time points in human gastric cell lines through retrospective data mining of experimental studies. In view of the molecular disparity of clinical samples and animal models, data from tissue, serum/plasma, urine, and ascites were excluded. Further, we utilized diverse bioinformatics approaches to retrieve experimentally validated, high-confidence targets of the HP-hDEmiRs to analyze the microRNA-mRNA interactions that are relevant to H. pylori pathogenesis. RESULTS: A total of 39 HP-hDEmiRs that showed unidirectional expression of either overexpression or downregulation were identified to modulate 23 targets explicitly studied under this infection. We also identified 476 experimentally validated targets regulated by at least 4 of the HP-hDEmiRs. In addition to the pathways prior-associated with H. pylori infection, the microRNA-mRNA interactome analysis identified several cellular processes and pathways highly associated with cell cycle, cell division, migration, and carcinogenesis. CONCLUSION: This study generated a platform to study the mechanisms utilized by this pathogen using microRNAs as surrogate.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , MicroRNAs , Neoplasias Gástricas , Animais , Humanos , MicroRNAs/genética , Helicobacter pylori/fisiologia , Estudos Retrospectivos , Infecções por Helicobacter/microbiologia , Neoplasias Gástricas/patologia , RNA Mensageiro , Mucosa Gástrica/patologia
17.
J Proteomics ; 273: 104794, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36535621

RESUMO

Cattle breeding approaches are an evolving field of research in veterinary science. Certain factors such as Ejaculate Rejection Rate (ERR) pose a limitation to such approaches. In this regard, we sought to investigate the spermatozoa and seminal plasma proteome of Hallikar bulls with low (n = 3) and high (n = 3) ERR. Through the Tandem mass spectrometry approach, we identified a total of 2409 proteins, in which 828 proteins were common in both the semen components, whereas 375 and 378 proteins were unique to spermatozoa and seminal plasma respectively. Tandem mass tags (TMT) based protein quantification resulted in 75 spermatozoal, and 42 seminal plasma proteins being differentially regulated between high and low ERR bulls. Proteins such as SPADH2, TIMP-2, and PLA2G7 which are negative regulators of motility were upregulated in the seminal plasma of high ERR bulls. Proteins such as OAZ3, GPx4, and GSTM3 whose upregulation leads to reduced motility were upregulated in the spermatozoa of high ERR bulls. Caltrin and ADM proteins that enhance sperm motility were downregulated in the seminal plasma of high ERR bulls. The regulation of ACE, a negative regulator of sperm motility was upregulated in both the spermatozoa and seminal plasma of high ERR bulls. SIGNIFICANCE: The saying "Bull is more than half of the herd" signifies the importance of bull in the genetic improvement of the herd. Traditionally used semen quality tests will provide limited information about the potential fertility of bulls. The proteomics approach is a promising omics technology to understand the factors involved in male fertility. The present study identified the spermatozoal and seminal plasma proteins that are differentially regulated between high and low ERR bulls. Sperm motility-associated proteins are differentially regulated. This study if improved further, can be used to develop markers associated with semen quality which is useful for the selection of bulls.


Assuntos
Análise do Sêmen , Sêmen , Bovinos , Masculino , Animais , Sêmen/química , Análise do Sêmen/métodos , Proteômica , Motilidade dos Espermatozoides , Espermatozoides/metabolismo , Proteínas de Plasma Seminal/análise
18.
ACS Infect Dis ; 8(10): 2106-2118, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36044540

RESUMO

Phosphorylation and other post-translational modifications of red blood cell (RBC) proteins govern membrane function and have a role in the invasion of RBCs by the malaria parasite, Plasmodium falciparum. Furthermore, a percentage of RBC proteins are palmitoylated, although the functional consequences are unknown. We establish dynamic palmitoylation of 118 RBC membrane proteins using click chemistry and acyl biotin exchange (ABE)-coupled LC-MS/MS and characterize their involvement in controlling membrane organization and parasite invasion. RBCs were treated with a generic palmitoylation inhibitor, 2-bromopalmitate (2-BMP), and then analyzed using ABE-coupled LC-MS/MS. Only 42 of the 118 palmitoylated proteins detected were palmitoylated in the 2-BMP-treated sample, indicating that palmitoylation is dynamically regulated. Interestingly, membrane receptors such as semaphorin 7A, CR1, and ABCB6, which are known to be involved in merozoite interaction with RBCs and parasite invasion, were found to be dynamically palmitoylated, including the blood group antigen, Kell, whose antigenic abundance was significantly reduced following 2-BMP treatment. To investigate the involvement of Kell in merozoite invasion of RBCs, a specific antibody to its extracellular domain was used. The antibody targeting Kell inhibited merozoite invasion of RBCs by 50%, implying a role of Kell, a dynamically palmitoylated potent host-derived receptor, in parasite invasion. Furthermore, a significant reduction in merozoite contact with the RBC membrane and a consequent decrease in parasite invasion following 2-BMP treatment demonstrated that palmitoylation does indeed regulate RBC susceptibility to parasite invasion. Taken together, our findings revealed the dynamic palmitoylome of RBC membrane proteins and its role in P. falciparum invasion.


Assuntos
Antígenos de Grupos Sanguíneos , Malária Falciparum , Parasitos , Semaforinas , Animais , Biotina/metabolismo , Antígenos de Grupos Sanguíneos/metabolismo , Cromatografia Líquida , Lipoilação , Proteínas de Membrana/metabolismo , Merozoítos/metabolismo , Parasitos/metabolismo , Plasmodium falciparum/metabolismo , Semaforinas/metabolismo , Espectrometria de Massas em Tandem
19.
J Proteome Res ; 21(10): 2293-2310, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36039803

RESUMO

Background: Distinct hippocampal subfields are known to get affected during aging, psychiatric disorders, and various neurological and neurodegenerative conditions. To understand the biological processes associated with each subfield, it is important to understand its heterogeneity at the molecular level. To address this lacuna, we investigated the proteomic analysis of hippocampal subfields─the cornu ammonis sectors (CA1, CA2, CA3, CA4) and dentate gyrus (DG) from healthy adult human cohorts. Findings: Microdissection of hippocampal subfields from archived formalin-fixed paraffin-embedded tissue sections followed by TMT-based multiplexed proteomic analysis resulted in the identification of 5,593 proteins. Out of these, 890 proteins were found to be differentially abundant among the subfields. Further bioinformatics analysis suggested proteins related to gene splicing, transportation, myelination, structural activity, and learning processes to be differentially abundant in DG, CA4, CA3, CA2, and CA1, respectively. A subset of proteins was selected for immunohistochemistry-based validation in an independent set of hippocampal samples. Conclusions: We believe that our findings will effectively pave the way for further analysis of the hippocampal subdivisions and provide awareness of its subfield-specific association to various neurofunctional anomalies in the future. The current mass spectrometry data is deposited and publicly made available through ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD029697.


Assuntos
Imageamento por Ressonância Magnética , Proteômica , Adulto , Envelhecimento , Formaldeído , Hipocampo , Humanos , Imageamento por Ressonância Magnética/métodos
20.
OMICS ; 26(7): 382-391, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35759428

RESUMO

The hippocampus demonstrates age-associated changes in functions, neuronal circuitry, and plasticity during various developmental stages. On the contrary, there is a significant knowledge gap on age-associated proteomic alterations in the hippocampus subfields. Using tandem mass tag-based high-resolution mass spectrometry and quantitative proteomics, we report here age-associated changes in the human hippocampus at the subregional level. We used formalin-fixed paraffin-embedded hippocampal tissue sections from a total of 12 healthy individuals, with 3 individuals from each of the 4 different age groups, specifically, 1-10, 21-30, 31-40, and 81-90 years. We found that lysosome and oxidative phosphorylation were the pathways enriched in the 81- to 90-year age group. On the contrray, nervous system development, synaptic plasticity and transmission, messenger RNA (mRNA) splicing, and electron transport chain (ETC) complex-I activity were the enriched biological processes observed in the younger age groups. In a hippocampus subfield context, our topline findings on age-associated proteome changes include altered expression of proteins associated with adult neurogenesis with age in the dentate gyrus and increased expression of immune response-associated proteins with age in certain cornu ammonis sectors of the hippocampus. Signal peptide analysis predicted hippocampal proteins with secretory potential. While these new findings warrant replication in larger study samples, the current data contribute to (1) our understanding of the molecular basis of proteomic changes across various age groups in hippocampus subfields in healthy individuals, and (2) the design and interpretation of future research on the age-associated neurodegenerative disorders.


Assuntos
Imageamento por Ressonância Magnética , Proteômica , Adulto , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Hipocampo/fisiologia , Humanos , Lactente , Imageamento por Ressonância Magnética/métodos , Proteoma , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...